The Relationship Between **Planetary Spatial Data** Infrastructure and the Planetary Data System J. Laura, R. E. Arvidson, and L. R. Gaddis

Quick Aside: Where are we operating from?

- Spatial data should just work
- Terrestrial communities are finding success with spatial data infrastructures
- The PDS is critical we want to work with the PDS

Lessons from Terrestrial SDIs

- Single source solutions fail
- Distributed solutions (grass roots) with long term support flourish
- Tight coupling between data and tools fail

- 'the formal archive for the planetary sciences'
- seeks to preserve and make data available
- works with mission teams and individual providers to plan and implement ingestion in the PDS-4 format into an archive

What is the PDS?

courtesy of the PDS roadmap

What is the PDS not?

National Aeronautics and Space Administration

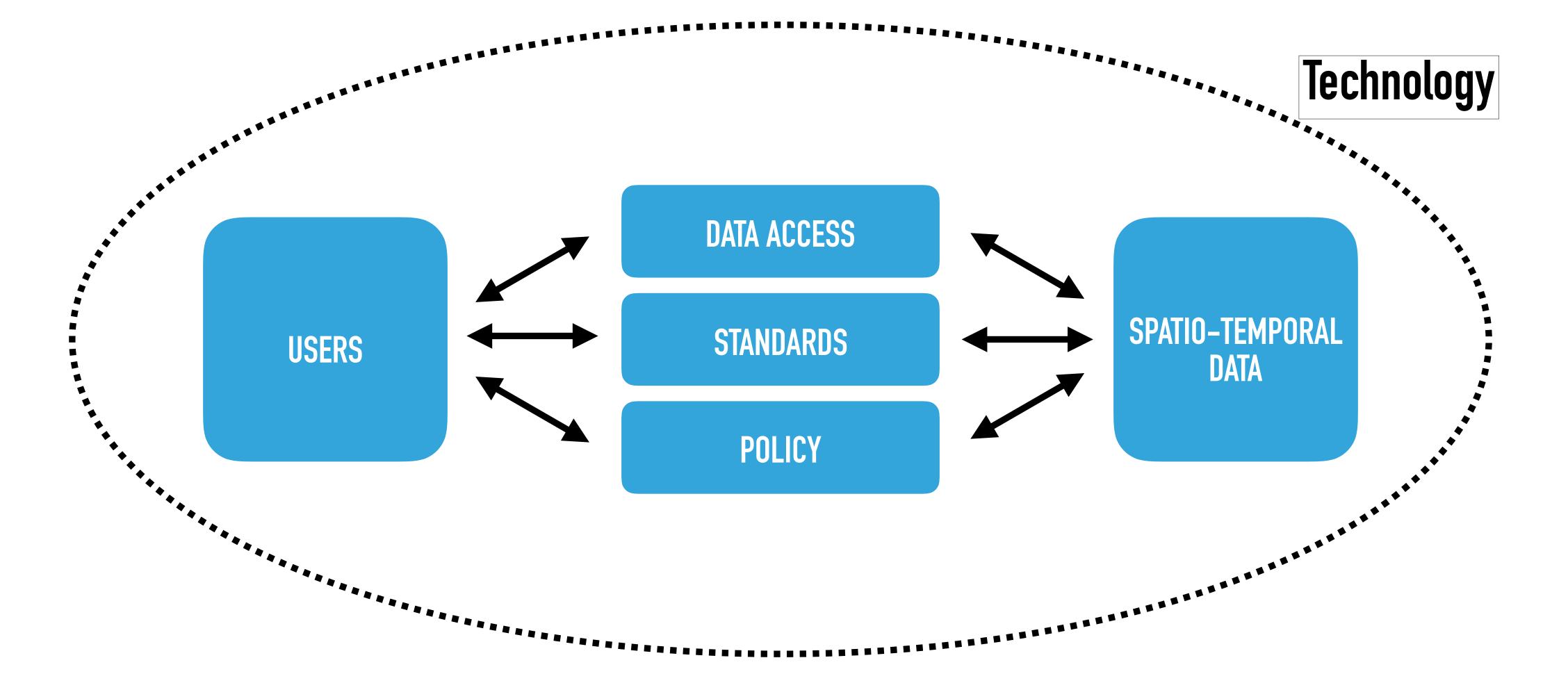
Planetary Data System Roadmap Study for 2017 – 2026

"There is a mismatch between the services and functions PDS is equipped to provide and the very high expectations of its users and NASA management."

– Finding II

"There is a need for more translation programs that transform data from the PDS4 archive file formats to more usable analysis-ready formats."

– Finding IX


"The PDS is not an appropriate archive or repository for software"

– Finding X

"Higher-order products produced by mission teams... are extremely valuable...but are not always included due to lack of resources..."

– Finding XIII

What is PSDI?

Yeah, yeah...what is it really?

- The mechanism or framework that makes data usable in an <u>efficient and flexible way</u> (interoperability):
- a coordinating effort so that data and metadata are **not** centrally managed, but are managed by the data creator (or a custodian)

What is a PSDI not?

- Realized in a planetary context we have no 3rd generation planetary SDIs
- a cookbook
- a mission website
- a tool tightly coupled to data
- an ArcGIS project
- can be seen as nascent PSDIs)

the PDS in isolation (though efforts within the PDS)

Defining Usability

We suggest that one major point of differentiation between PSDI and PDS is in how each defines usability.

Usability: PDS

- medium to long term accessibility
- discoverability: tight data/metadata coupling is great for this

 the system is usable when the user can find data via search mechanisms and convert them into an interoperable format

Usability: PSDI

- short(er) term interoperability

- the system is usable when the user can discover standards compliant, interoperable data and use it immediately in off the shelf tools

 discoverability: tight data/metadata coupling is great for this - hey, that looks familiar!

How is usability supported in the PDS?

- tight data/metadata coupling
- limited number of data formats
 - this forces tools to be developed to the format or for users to convert the format to an interoperable one
- data are available and readable long term
- we call this an 'engineering' view

How is usability supported in a PSDI?

- tight data/metadata coupling
- discovery to support technical and non-technical (e.g., fitness for use) metadata
- data available in standard (transient!) formats that work in current spatial tools without user conversion
 - spatial formats have a 'shelf-life' of ~15 years
 - shapefile (early 90s release, pretty long in the tooth today)
- we call this a 'user-centric' view

PSDI Depends on the PDS

- PDS is a critical source of data
 - 'Analysis Ready' Where does the burden for this processing fall?
 - Discoverable comes (in part) from archived metadata

PDS Benefits from Functional PSDIs

- PSDI help address the mismatch in community expectations (PDS Roadmap, Finding II)
- Frees the PDS from worrying about archiving software (PDS Roadmap, Finding X)

Steps Towards an PSDI

- Mars ODE, Mars Analyst Notebook (Geosciences Node)
- PILOT, Annex (Imaging Node)
- Treks (JPL)
- LunaServ (ASU)
- CRISM MTRDR (example higher order mission products that are GIS ready)
- Mission Webpages (as stop gaps)

Knowledge Inventories

- What data are available in spatial formats that are ready for interoperable use?
 - In what formats?
 - From whom and how can the providers be engaged?
 - How can back- / front-ends be separated?

Conclusion

- PDS and PSDI are not in competition
- PDS and PSDI are critical to fulfilling users' needs
- We (the technical community) need to start:
 - 1. developing knowledge inventories
 - 2. split infrastructural data access from front-ends
 - 3. implementing interoperable solutions